205 research outputs found

    On Weingarten transformations of hyperbolic nets

    Full text link
    Weingarten transformations which, by definition, preserve the asymptotic lines on smooth surfaces have been studied extensively in classical differential geometry and also play an important role in connection with the modern geometric theory of integrable systems. Their natural discrete analogues have been investigated in great detail in the area of (integrable) discrete differential geometry and can be traced back at least to the early 1950s. Here, we propose a canonical analogue of (discrete) Weingarten transformations for hyperbolic nets, that is, C^1-surfaces which constitute hybrids of smooth and discrete surfaces "parametrized" in terms of asymptotic coordinates. We prove the existence of Weingarten pairs and analyse their geometric and algebraic properties.Comment: 41 pages, 30 figure

    On a discretization of confocal quadrics. I. An integrable systems approach

    Full text link
    Confocal quadrics lie at the heart of the system of confocal coordinates (also called elliptic coordinates, after Jacobi). We suggest a discretization which respects two crucial properties of confocal coordinates: separability and all two-dimensional coordinate subnets being isothermic surfaces (that is, allowing a conformal parametrization along curvature lines, or, equivalently, supporting orthogonal Koenigs nets). Our construction is based on an integrable discretization of the Euler-Poisson-Darboux equation and leads to discrete nets with the separability property, with all two-dimensional subnets being Koenigs nets, and with an additional novel discrete analog of the orthogonality property. The coordinate functions of our discrete nets are given explicitly in terms of gamma functions.Comment: 37 pp., 9 figures. V2 is a completely reworked and extended version, with a lot of new materia
    • …
    corecore